Mar 282012
 

Central-nervous-system based neuromotor prosthesis (NMP) holds a great deal of promise for complete spinal cord injury (SCI) yet is still far from the clinical use.  Cortical-level NMP uses direct cortical recording and requires craniotomy for implanting a microelectrode array in the motor cortical area of an injured person. First successful human trial of the cortical NMP in a quadriplegic person, the BrainGate, was done by Dr. Donoghue and colleagues back in 2006. Last year, Dr. Edgerton and colleagues have applied a spinal NMP to train a paraplegic person to stand and walk on a treadmill.  As these cortical and spinal NMPs are reaching maturity, the question emerges, whether all people with SCI can benefit from this technology. In this post, I will try provide my perspective about the potential technology users.

SCI has different severity, motor complete or incomplete, and occurs at different spinal levels, from cervical to thoracic and lumbosacral, resulting in quadriplegia or paraplegia. NMP is potentially most viable for motor-complete SCI since people with incomplete SCI can benefit from extensive rehabilitation training. Quadriplegics with motor-complete SCI would likely benefit the most from this technology. One of major challenges for implementation of cortical NMP for quadriplegics is the availability of real-time adaptive decoding algorithms for controlling the body balance, needed to enable standing and locomotion. As a quadriplegic person completely loses his/her posture control, it is unlikely that they could use existing decoding algorithms for cortical NMP for standing and stepping. Still, such a person can use the cortical NMP for controlling an external device or an upper limb (through stimulation of peripheral nerves or muscles). Volitional control of an individual hand muscle by this kind of cortical CNMP has already been demonstrated in non-human primates by Dr. Fetz and colleagues.

It is not clear whether paraplegics can benefit from the NMP technology to the same degree as quadriplegics. As paraplegics have useful hand and arm functions, cortical NMP might be too risky and invasive of a procedure to justify the potential benefits. Perhaps, a spinal NMP controlled by a hand or a processor that interprets the person’s movement intent can be more beneficial for standing and walking. In a spinally-intact person, the leg movements and locomotion require no visual feedback and are adjusted in time and space through a local feedback circuitry in lumbo-sacral region of spinal cord. Provided that this feedback loop is intact in the paraplegic person, would be extremely beneficial to use this loop along with the spinal Central Pattern Generator (CPG) for enabling the locomotion. Recent human studies by Edgerton and others indicate simply turning these spinal neural circuits ON and OFF might not be enough for standing and/or stepping. Hopefully, with more robust decoding and encoding algorithms, the spinal NMP might become a viable clinical solution for paraplegics.

Considering these arguments, I would like to suggest that an ideal candidate for cortical NMP would be a quadriplegic, while an ideal candidate for spinal NMP would be a paraplegic.

 

 

  One Response to “Cortical and spinal neuromotor prosthetics: who would be an ideal candidate?”

  1. There’s a little more about BrainGate and brain-computer interfaces in a fact sheet Dr. Donoghue prepared, recently published with a set of similar pieces about neuromodulation by the International Neuromodulation Society, here: http://www.neuromodulation.com/fact_sheet_brain_computer_interfaces

 Leave a Reply

(required)

(required)

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>