Oct 202011
 

As the number of people with Alzheimer’s disease (AD) is rising with aging population, there is an increasing urgency in developing an effective approach to slow its progression. Despite the efforts by pharmaceutical companies, currently approved drugs provide only modest effects and are often difficult to target to the brain without avoiding the systemic side effects. A possibility of using electrical stimulation for combating the disease has not been considered until a serendipitous discovery reported in 2008 by Dr. Andres Lozano, a neurosurgeon at the University of Toronto. He applied the DBS stimulation at the satiety-controlling region of the brain, the fornix, in a patient with morbid obesity with a hope of reducing the sensation of hunger. Surprisingly, the psychological tests have shown a significant improvement in patient’s memory. The follow-up study in AD patients, published in 2010, showed that the fornix stimulation can slow the memory decay. The authors of the study speculate that possible mechanism of action involves plasticity in the limbic circuitry counteracting the AD-related neurodegeneration. As a result of these findings, a startup company called Functional Neuromodulation Inc. was formed in 2010 to commercialize the DBS use in the fornix for AD patients. It recently obtained funding from Genesys Capital and Medtronic to conduct the second clinical trial in the AD patients. It is worth mentioning that other companies, such as Medtronic and St. Jude Medical, have considerable intellectual property on electrical stimulation of other limbic areas, such as the anterior thalamic nucleus, internal capsule, and subgenual cingulate cortex, which may also play an important role the memory formation process. We will anxiously await further developments in the use of DBS to counteract the progression of AD.

  One Response to “DBS for Alzheimer’s disease”

  1. [...] beneficial effects of direct current stimulation (tDCS) of the temporal lobe and frontal cortex, DBS of the fornix, and recording in CA3 region coupled with stimulation of CA1 region in the hippocampus.  The [...]

Sorry, the comment form is closed at this time.